Naive binning improves phylogenomic analyses
نویسندگان
چکیده
MOTIVATION Species tree estimation in the presence of incomplete lineage sorting (ILS) is a major challenge for phylogenomic analysis. Although many methods have been developed for this problem, little is understood about the relative performance of these methods when estimated gene trees are poorly estimated, owing to inadequate phylogenetic signal. RESULTS We explored the performance of some methods for estimating species trees from multiple markers on simulated datasets in which gene trees differed from the species tree owing to ILS. We included *BEAST, concatenated analysis and several 'summary methods': BUCKy, MP-EST, minimize deep coalescence, matrix representation with parsimony and the greedy consensus. We found that *BEAST and concatenation gave excellent results, often with substantially improved accuracy over the other methods. We observed that *BEAST's accuracy is largely due to its ability to co-estimate the gene trees and species tree. However, *BEAST is computationally intensive, making it challenging to run on datasets with 100 or more genes or with more than 20 taxa. We propose a new approach to species tree estimation in which the genes are partitioned into sets, and the species tree is estimated from the resultant 'supergenes'. We show that this technique improves the scalability of *BEAST without affecting its accuracy and improves the accuracy of the summary methods. Thus, naive binning can improve phylogenomic analysis in the presence of ILS. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci.
Phylogenomic approaches offer a wealth of data, but a bewildering diversity of methodological choices. These choices can strongly affect the resulting topologies. Here, we explore two controversial approaches (binning genes into "supergenes" and inclusion of only rapidly evolving sites), using new data from hyloid frogs. Hyloid frogs encompass ∼53% of frog species, including true toads (Bufonid...
متن کاملWeighted Statistical Binning: Enabling Statistically Consistent Genome-Scale Phylogenetic Analyses
Because biological processes can result in different loci having different evolutionary histories, species tree estimation requires multiple loci from across multiple genomes. While many processes can result in discord between gene trees and species trees, incomplete lineage sorting (ILS), modeled by the multi-species coalescent, is considered to be a dominant cause for gene tree heterogeneity....
متن کاملImproved Phylogenomic Taxon Sampling Noticeably Affects Nonbilaterian Relationships
Despite expanding data sets and advances in phylogenomic methods, deep-level metazoan relationships remain highly controversial. Recent phylogenomic analyses depart from classical concepts in recovering ctenophores as the earliest branching metazoan taxon and propose a sister-group relationship between sponges and cnidarians (e.g., Dunn CW, Hejnol A, Matus DQ, et al. (18 co-authors). 2008. Broa...
متن کاملObtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
Accurate, well-calibrated estimates of class membership probabilities are needed in many supervised learning applications, in particular when a cost-sensitive decision must be made about examples with example-dependent costs. This paper presents simple but successful methods for obtaining calibrated probability estimates from decision tree and naive Bayesian classifiers. Using the large and cha...
متن کاملDiscretizing Continuous Features for Naive Bayes and C4.5 Classifiers
In this work, popular discretization techniques for continuous features in data sets are surveyed, and a new one based on equal width binning and error minimization is introduced. This discretization technique is implemented for the UCI Machine Learning Repository [7] dataset, Adult database and tested on two classifiers from WEKA tool [6], NaiveBayes and J48. Relative performance changes for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 29 18 شماره
صفحات -
تاریخ انتشار 2013